top of page
盧創
工作室


讓創意落地,發揮影響力
將深度科學、商業洞察與職涯策略,轉化為清楚且可執行的下一步。

生技與生醫觀點
分享生技與生醫的最前線發展、產業趨勢與職涯觀察,讓科學貼近生活。


ADC 系列(二)為什麼現在的 ADC,和 10 年前完全不一樣?──從失敗中進化的抗體藥物偶聯體(ADC Evolution)
這是 ADC 系列的第二篇文章,寫給 沒有 ADC 專業背景 、但想理解 ADC evolution(抗體藥物偶聯體的演進) 的讀者。本篇聚焦於 why ADCs failed before, and why next-generation ADCs succeed today ,從歷史失敗、工程修正到平台策略,系統性解析不同 ADC generations 之間的關鍵差異。 Executive Summary 如果你只記得一件事: ADC 並不是突然變強,而是花了十多年,逐步修正那些「一開始就會失敗的設計」。 今天成功的 ADC,看起來像是技術突破,實際上是大量失敗後,慢慢形成的工程與策略共識。 一、 回到起點:為什麼早期 ADC 失敗率這麼高?(Early ADC Development) 回顧 ADC evolution 的歷程可以發現,抗體藥物偶聯體並不是突然變成熟,而是經歷了多個世代的失敗與修正,才逐步形成今天被稱為 next-generation ADC platform 的設計邏輯。 在 2000–2010 年間,ADC 被

Jason Lu
2天前讀畢需時 4 分鐘


抗體藥物偶聯體(Antibody–Drug Conjugate, ADC)完整解析|從零開始理解設計、Linker、Internalization 與新藥平台策略
這是一篇寫給「沒有 ADC 專業背景,但想真正理解 ADC 為什麼在 2020s 成為腫瘤新藥核心平台」的長篇入門+進階文章。本文會從最基本的概念講起,逐步帶你理解 ADC 的設計邏輯、工程取捨,以及為什麼這項技術會深刻影響未來十年的癌症藥物開發與產業策略。 Executive Summary 抗體藥物偶聯體(ADC) 是一種結合「抗體精準性」與「小分子藥物高毒性」的藥物設計概念。 ADC 的成功,不只取決於抗體是否找得到癌細胞,而是 抗體、linker、payload 與細胞內運輸(internalization)是否被整體設計 。 2020 年後 ADC 爆發,來自三件事同時成熟:工程技術、新世代 payload,以及大型藥廠的策略轉向。 ADC 已從「單一藥物」進化為 可複製、可擴張的腫瘤治療平台 。 一、什麼是 Antibody–Drug Conjugate (ADC)?為什麼不能只把它當成「抗體加毒藥」? 如果你是第一次接觸 ADC,可以先把它想成一個非常直覺的概念: 用抗體當導航系統,把非常毒的藥物,精準送進癌細胞裡。...

Jason Lu
3天前讀畢需時 4 分鐘


癌症疫苗:從免疫學理論到個人化 mRNA 治療的新時代
前言:為什麼癌症疫苗重新成為焦點? 長期以來,「 癌症疫苗 」在腫瘤學中一直是一個充滿理想、卻屢遭挫折的概念。早期多數治療型癌症疫苗在臨床試驗中未能顯示明確療效,使得學界與產業界對於免疫系統是否真的能被有效「訓練」來對抗癌細胞,抱持高度懷疑的態度。 然而,這個局面正在快速改變。 隨著 腫瘤基因體定序、腫瘤新抗原(neoantigen)鑑定,以及 mRNA 傳遞技術 的成熟,癌症疫苗研究迎來了新的轉捩點。截至 2025–2026 年,已有多項 癌症疫苗臨床試驗 在黑色素瘤、肺癌、胰臟癌、大腸直腸癌等多種實體腫瘤中進行,且部分計畫已推進至後期臨床階段。更重要的是,現代癌症疫苗多半不再單獨使用,而是與 免疫檢查點抑制劑 併用,展現出新的治療潛力。 什麼是癌症疫苗? 癌症疫苗(cancer vaccine)是一種免疫治療策略,目標是誘發或增強病人自身的免疫系統,使其能夠辨識並攻擊癌細胞。與預防傳染病的疫苗不同,多數癌症疫苗屬於治療型疫苗(therapeutic vaccines) ,是在癌症已經發生後施打。 癌症疫苗的核心概念,是將 腫瘤相關抗原...

Jason Lu
1月24日讀畢需時 6 分鐘


PEG-free LNP:BioNTech 如何用電荷重新定義 mRNA 遞送的穩定性設計
前言 在 mRNA therapeutics 與 lipid nanoparticle(LNP)領域中, PEG-lipid 幾乎被視為不可或缺的標準元件 。 PEG 的角色很清楚: 提供 steric shielding,防止顆粒聚集 延長血液循環時間 降低非專一性吸附 然而,隨著 mRNA 技術從「一次性疫苗」走向「重複給藥的系統性治療」, PEG 相關的 anti-PEG 抗體 與 Accelerated Blood Clearance(ABC)現象 ,逐漸成為實際的臨床與平台風險。 BioNTech Delivery Technologies 團隊近期發表的一篇 bioRxiv 論文,提出了一個關鍵問題: LNP 的穩定性,真的只能靠 PEG 提供的 steric shielding 嗎? 他們的答案,催生了一個值得整個 delivery field 認真對待的概念: PEG-free LNP 。 為什麼 PEG-free LNP 會失穩?問題出在 pH 7.4 這篇論文的價值,不在於「去掉 PEG」,而在於 先釐清問題本身 。 作者首

Jason Lu
1月22日讀畢需時 4 分鐘


Targeted LNP Delivery:從 GalNAc 到抗體導向的下一代核酸遞送策略
前言:LNP 的下一個瓶頸,不是包得進去,而是「送對地方」 脂質奈米粒子(Lipid Nanoparticles, LNPs)已成功支撐 mRNA 疫苗與多項核酸藥物上市,證明其在體內遞送脆弱核酸分子的可行性。然而,隨著適應症從肝臟擴展至免疫細胞、中樞神經系統與實體腫瘤, 「非專一性體內分佈」正逐漸成為 LNP 發展的主要限制 。 對多數 LNP 平台而言,問題已不再是「能不能表現」,而是: 是否需要過高劑量才能達到目標組織 是否造成不必要的 off-target exposure 是否壓縮了治療指數(therapeutic window) 在這樣的背景下, targeted LNP delivery(目標導向式 LNP 遞送) 成為下一代核酸藥物平台的關鍵戰場。 為什麼多數 LNP 會「自然地」累積在肝臟? 在討論 targeted LNP 之前,有一個基本事實必須先釐清: 多數系統性給藥的 LNP,並非「被設計送去肝臟」,而是「被生物系統帶去肝臟」。 LNP 進入體循環後,會快速吸附血清蛋白,特別是 apolipoprotein E(Apo

Jason Lu
1月18日讀畢需時 4 分鐘


實驗設計(DoE):原則、優勢與對科學研發的關鍵影響
前言:當研發問題不再只靠「多做幾組實驗」 在現代科學研究與工程研發中,真正的挑戰早已不是「要不要做實驗」,而是—— 如何在有限的時間、資源與樣本數下,系統性地理解複雜系統,並做出正確決策。 無論是在藥物開發、製程優化、材料工程,或生醫平台研發中,研究人員往往同時面對多個可調變因。若仍採用傳統的一次只改一個變因(One-Factor-at-a-Time, OFAT)方法,不僅效率低落,也極容易錯失關鍵的交互作用(interaction)。 實驗設計(Design of Experiment, DoE) 正是在這樣的背景下,成為現代研發不可或缺的核心方法。 什麼是實驗設計(DoE)? 實驗設計(DoE)是一套以統計為基礎的方法論,用來系統性地研究多個輸入變因(factors)如何同時影響一個或多個輸出結果(responses)。 DoE 的核心精神不在於「做更多實驗」,而在於: 用最少、最有策略的實驗,獲得最大資訊量,並建立可解釋、可預測的模型。 這對於高度多變、非線性、且存在交互作用的系統尤其重要。 實驗設計(DoE)的四大核心原則 1️⃣ 隨機

Jason Lu
1月18日讀畢需時 4 分鐘


高通量 LNP 篩選技術:條碼化(Barcoding)如何改變脂質奈米粒子研發
前言:核酸藥物真正的瓶頸,其實在「遞送」 mRNA 疫苗、siRNA 藥物、CRISPR 基因編輯等核酸藥物,已經徹底改變了現代醫療。然而,這些療法能否真正成功,關鍵往往不只在於「序列設計」,而是在於—— 核酸能不能被有效、安全且精準地送到正確的細胞與器官 。 脂質奈米粒子(Lipid Nanoparticles, LNPs)目前仍是核酸藥物體內遞送的主流平台。透過包覆脆弱的核酸分子、避免體內降解,並促進細胞吸收,LNP 技術促成了 Onpattro® 、 Comirnaty® 與 Spikevax® 等關鍵產品的成功。 但 LNP 的設計本質上是一個高度多變、難以直覺優化的工程問題 。 離子化脂質的化學結構、脂質比例、PEG 密度、脂肪酸尾端設計,只要稍有不同,就可能徹底改變: 體內分佈(biodistribution) 轉染效率 免疫反應與毒性輪廓 過去,LNP 的篩選大多仰賴「一種配方對應一隻動物」的方式,搭配螢光或 luciferase reporter。這樣的流程不僅成本高、耗時長,也嚴重限制了可探索的配方空間。 近年來, DNA

Jason Lu
1月18日讀畢需時 5 分鐘


脂質奈米粒子如何實現先進核酸遞送:LNP 藥物遞送(LNP drug delivery)的工程原理解析
前言:脂質奈米粒子在核酸治療中的關鍵角色 在過去十年間, 脂質奈米粒子(lipid nanoparticles, LNPs) 已成為核酸治療(nucleic acid therapeutics)中最關鍵的遞送技術之一,支撐了多項臨床與商業化成功案例,包括 Onpattro®(patisiran) 以及 Pfizer-BioNTech 與 Moderna 的 mRNA COVID-19 疫苗。 雖然核酸藥物常被聚焦於序列設計或分子生物學層面,但在真實世界中, 治療成效往往取決於遞送系統本身是否被正確工程化 。 LNP 藥物遞送(LNP drug delivery)並非被動載體,而是一個高度可設計的工程系統 ,其脂質組成、電荷行為與結構動態,直接決定體內分佈、細胞攝取、內涵體逃脫(endosomal escape),以及最終的臨床表現。 本文將從工程與平台設計的角度,解析 LNP 藥物遞送的核心設計原理 ,說明脂質組成如何形塑核酸治療的效率、安全性與可預測性。 脂質奈米粒子的基本組成:LNP 的四大核心元件 大多數臨床級 LNP 藥物遞送系統,由

Jason Lu
1月11日讀畢需時 4 分鐘


精通 mRNA 合成(mRNA synthesis):從體外轉錄、5′ 端加帽到 Poly(A) 尾端工程的完整解析
前言 信使核醣核酸(messenger RNA, mRNA)已徹底改變現代醫療的可能性。作為一種治療平台,mRNA 使疫苗能夠快速開發,也推動了個人化癌症免疫治療與罕見疾病的蛋白質替代策略。然而,每一項成功的 mRNA 治療產品背後,都仰賴一套 高度工程化的 mRNA 合成流程 。 在多數討論中,mRNA 治療(mRNA therapeutics)的臨床成果往往成為焦點,但實際上, mRNA 合成(mRNA synthesis)的品質,才是真正決定轉譯效率、免疫反應、製程可擴展性與法規可行性的關鍵 。體外轉錄(IVT)、5′ 端加帽(5′ capping)與 Poly(A) 尾端工程中的每一個決策,都會直接影響一個 mRNA 產品能否從實驗室順利推進至臨床與量產。 本文將以工程與 CMC(Chemistry, Manufacturing, and Controls)的視角,深入解析 mRNA 合成 的三大核心模組: 體外轉錄(In Vitro Transcription, IVT) 5′ 端加帽策略 Poly(A) 尾端工程 這三者共同構成現代

Jason Lu
1月11日讀畢需時 4 分鐘


mRNA 治療(mRNA therapeutics)的崛起:從遺傳訊使到顛覆醫療的技術平台
前言 信使核醣核酸(messenger RNA,mRNA)曾經只是分子生物學實驗室中的研究主題,但在近十年間,已成為現代醫療中最具顛覆性的技術之一。COVID-19 疫情讓 mRNA 疫苗走入大眾視野,但這並非一夕之間的奇蹟,而是數十年基礎研究、工程突破,以及對 RNA 脆弱特性的持續克服所累積的成果。 如今, mRNA 治療(mRNA therapeutics) 已不再只是「傳遞遺傳訊息的分子」,而被視為一種 可程式化的醫療平台 ,能夠應用於感染性疾病、癌症、罕見疾病,以及再生醫學等多個領域。mRNA 不再只是單一用途的藥物,而更像是一段生物軟體,指示細胞在特定時間、以可控方式製造治療性蛋白質。 本文將深入解析 mRNA 治療背後的科學與工程原理,涵蓋其分子結構、合成製造方式、新興 RNA 模態,以及臨床應用版圖。無論你是生醫研究人員、正在學習 RNA 生物學的學生,或希望從系統層級理解技術趨勢的產業工作者,這篇文章都將說明為何 mRNA 治療正在重塑未來醫療。 什麼是 mRNA 治療(mRNA therapeutics)? mRNA 是一種

Jason Lu
1月9日讀畢需時 6 分鐘


生醫工程實際應用:工程師如何改變現代醫學 — 以 MIT 與 Robert Langer 為例
工程師在生醫領域能夠做什麼? 前言 工程師受過以科學與數學為基礎的訓練,擅長將複雜問題拆解、建模,並找到可行的解決方案。在我們的日常生活中,土木工程師、化學工程師、電機工程師與軟體工程師無所不在,持續改善交通、能源、通訊與科技系統。 那麼, 工程師能為醫學帶來什麼樣的改變? 答案就在於 生醫工程實際應用 。而談到這個領域,幾乎不可能不提到一位關鍵人物—— 麻省理工學院(MIT)教授 Robert Langer 。他是當代最具影響力的生醫工程師之一,也完美詮釋了工程思維如何真正改變醫療與人類健康。 Robert Langer 教授現任 MIT David H. Koch Institute Professor ,同時也是 哈佛醫學院外科系資深講師 。在 MIT,「Institute Professor」是授予教師的最高榮譽,象徵其對學術與社會的深遠貢獻。至今,Langer 教授已發表超過 1,500 篇學術論文 ,並擁有 1,400 項以上已核准或申請中的專利 ,是全球被引用次數最高的研究學者之一。 他的研究核心在於: 用工程的方法,解決真正的醫療

Jason Lu
2025年12月20日讀畢需時 6 分鐘


走進製藥產業(三):AI 與數位轉型如何重塑藥物開發
前言 | AI 藥物開發 隨著 AI 在藥物開發中的應用(AI in pharmaceutical drug development) 急速成長,以及製藥業全面進入數位化時代,現代藥物從發想、設計、測試到製造的方式,正經歷一場前所未有的革命。 在這個系列的第一篇文章中,我們介紹了藥廠內部的核心部門。 第二篇文章中,我們探討了藥品如何通過法規審查、取得市場准入,並在上市後持續進行安全監測。 在本篇第三篇文章中,我們將深入了解 人工智慧、數位化、智慧製造、真實世界證據、以及計算醫學(computational medicine) 如何重新定義藥物開發的全生命週期 —— 從實驗室到病患手中。 1. AI 加速藥物發現:提高效率、降低成本 傳統的藥物發現流程耗時、昂貴,而且失敗率相當高。一個成功的候選藥物往往是從上萬個化合物中篩選而出。 AI 正在大幅改變這個現況。 AI 如何改變早期藥物發現流程? 預測建模(predictive modeling) 可在化合物尚未合成前,就預測其親和力、毒性、溶解度與代謝特性。 生成式 AI(generative

Jason Lu
2025年11月16日讀畢需時 4 分鐘


GLP-1減肥藥降價:政策轉變和市場影響分析
白宮 × Lilly × Novo:GLP-1 減肥藥降價協議深度解析|藥價政策、股市反應與產業影響一次看懂 前言 近年來,GLP-1 類減肥藥(如 Ozempic、Wegovy、Zepbound)已成為全球最受矚目的醫藥產品之一。不僅因為其顯著的減重效果,更因為 GLP-1 正逐步擴展到心血管疾病、睡眠呼吸中止症(OSA)、NASH、成癮治療等領域,被視為下一個「多適應症超級藥物平台」。 然而,在 GLP-1 需求持續攀升、藥價居高不下的背景下,美國政府與 Eli Lilly、Novo Nordisk 最近的一場重要會面,引發市場對「GLP-1 減肥藥降價」的高度關注。 雖然許多政策仍在研議階段,但這場協商可能代表 GLP-1 市場進入全新時代。本篇文章將從生醫產業、政策與金融市場三個角度,完整解析其潛在影響。 一、政策重大轉折:白宮推動 GLP-1 進入「政府價格介入」時代 白宮在近期與 Eli Lilly、Novo Nordisk 的高層會面後,多家媒體報導出現「GLP-1 價格可能從每月 $1,000 降至 $250–350」的方向性訊息

Jason Lu
2025年11月13日讀畢需時 4 分鐘


製藥產業部門內幕(上):探索藥物開發的關鍵部門與角色
The pharmaceutical industry is more than just lab coats and experiments — it’s a complex ecosystem where science, engineering, and business intersect. From R&D and manufacturing to clinical trials, regulatory affairs, and business development, each department plays a critical role in transforming a molecule into a life-changing medicine. Explore how these teams work together to bring innovation from the lab to the patient.

Jason Lu
2025年11月2日讀畢需時 6 分鐘
bottom of page